Stem Cell Blog

Употребата на матичните клетки од папочна врвца рапидно се зголемува. Пред 10 години крвта од папочна врвца можеше да лекува околу 40 состојби, но денес таа бројка е над 80. Со нетрпение очекуваме нови терапии за болести и нарушувања како што се дијабет, аутизам и мозочен удар, можете да бидете во тек со најновите случувања во регенеративната медицина на нашиот блог за матични клетки.



AdobeStock_390042977-980x551-1.jpeg

World Cancer Day takes place this year on 4th February. A day of global unity, dedicated to raising awareness about cancer, World Cancer Day also plays an important part in dispelling myths about cancer, in addition to promoting early detection and prevention.

This year’s World Cancer Day theme is ‘Close the Care Gap’, referring to the gap between the level of care received by privileged vs underprivileged cancer patients.

On this significant day, we’re invited not only to reflect on the impact of cancer but also asked to consider how care outcomes for a cancer diagnosis could be improved.

One such way is through cord blood banking, which is already being used in over 80 treatments, including for leukaemia.

 In this blog, we will delve into the importance of cord blood banking and how it is offering hope in the fight against cancer.

Understanding Cord Blood Banking

Cord blood banking involves the collection and preservation of the residual blood from the newborn umbilical cord following birth.

This precious resource contains powerful stem cells that can develop into various specialised cells, such as the ones in hair, skin, organs, blood and the nervous system.

Their unique abilities to self-replicate and differentiate positions them at the forefront of regenerative medicine, a branch of medicine that makes use of stem cells’ potential capacity to repair, renew and regrow cells and tissues to treat a range of diseases. [1]

The Benefits of Cord Blood Banking

Cord blood stem cells are the approved therapy for over 80 diseases, including leukaemia, neuroblasts, and certain genetic disorders.

Their relative naivety and plasticity when compared to stem cells derived from other sources makes them some of the purest and most powerful forms of stem cell available.

Cord blood stem cells are a 100% match for your baby, meaning that they can be used in therapies without risk of rejection. They also have a good chance of being a perfect match for siblings and a partial match for family members, offering a safer and more accessible option for transplantation.

A painless and non-invasive procedure, cord blood collection is safe, non-invasive and poses little to no risk to the mother or baby.

As medical research advances, the potential uses of cord blood stem cells continue to expand.

Researchers are exploring their use in regenerative therapies that seek to harness the power of these stem cells in order to combat diseases that are currently incurable, including some forms of cancer. [2]

Promoting Cord Blood Banking on World Cancer Day

World Cancer Day provides an ideal platform to educate expectant parents and the general public about some of the most pioneering research happening to combat cancer, amongst them: cord blood banking.

Understanding the potential lifesaving impact of this resource is the first step in motivating more families to consider this option.

World Cancer Day reminds us of the global challenge posed by this disease, but it also presents an opportunity to promote hope and innovative solutions.

Cord blood banking is one such solution that has the potential to save lives and help in the battle against cancer.

Sarah’s Story

For eight year old Sarah, for instance, cord blood banking was the last hope she had after both chemotherapy and a bone marrow transplant proved ineffective in the treatment of her acute myeloid leukaemia. [3]

A form of cancer that attacks the monocyte or granulocyte cells, naive progenitor white blood cells from bone marrow, acute myeloid leukaemia predominantly affects children and young people.

Chances of a full recovery are rarely good.

Having undergone a bone marrow transplant from her brother, Sarah initially showed promising signs of recovery, until the cancer returned.

Rounds of emergency chemotherapy were required to try to keep the cancer at bay, but it continued to return.

Seeing no other option for Sarah, doctors at the Royal Manchester Children’s Hospital offered her a pioneering stem cell transplant using donated cord blood.

Incredibly, thanks to this treatment Sarah and five other children who also participated in the trial, are now in remission; their access to a healthy, happy life restored to them.

Although this transplant was the result of donation, privately banking cord blood stem cells means that your baby always has access to their own perfect donor match: themselves.

This drastically reduces the risk of rejection should they ever need to access a therapy in future like Sarah’s.

With thousands of clinical trials currently underway to explore the potential uses for umbilical cord blood stem cells in a range of regenerative treatments, storing these precious cells the day baby is born could safeguard their future for years to come.

For more information about the power of cord blood banking, download your FREE Welcome Pack below.

Sources

[1] Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006;2(2):155-62. doi: 10.1007/s12015-006-0022-y. PMID: 17237554; PMCID: PMC3753204.

[2] Devi S, Bongale AM, Tefera MA, Dixit P, Bhanap P. Fresh Umbilical Cord Blood-A Source of Multipotent Stem Cells, Collection, Banking, Cryopreservation, and Ethical Concerns. Life (Basel). 2023 Aug 23;13(9):1794. doi: 10.3390/life13091794. PMID: 37763198; PMCID: PMC10533013.

[3] BBC (2023, June 20). Leukaemia: Umbilical cord blood transplant saved my daughter – mum. BBC News. https://www.bbc.co.uk/news/uk-england-manchester-65960349


AdobeStock_193450904-980x653-1.jpeg

This month sees two important missions lifting-off into space, both of which will carry out pioneering stem cell research.

The first of these has already launched. On 18 January, Ax-3, the third mission by private company Axiom to be launched using Space X rockets, departed for the International Space Station. [1]

Aboard were four astronauts who over the course of two weeks will carry out a variety of experiments in microgravity.

Amongst them will be several significant ones relating to stem cells.

The Sanford Stem Cell Institute (SSCI) operating out of the University of California, San Diego will be paying close attention to the astronauts’ findings in relation to their investigation into tumour organoids. [2] [3]

By analysing the growth rates of cancer stem cells, SSCI hope to build on previous Axiom missions and shed light on how cancer develops in order to identify early warning signs.

Aboard the same mission, the National Stem Cell Foundation (NSCF) are seeking to utilise 3D brain models to help ascertain key onset markers of neurodegenerative diseases. [4]

NSCF Researchers hope that by analysing the effects of microgravity on the 3D models, which are derived from the induced pluripotent stem cells of patients with either Parkinson’s or primary progressive multiple sclerosis, they’ll be able to better understand how these diseases develop.

In this, the third Axiom mission of its kind, researchers hope to take advantage of the different rates at which stem cells develop in space to point out what the future of treatment looks like for some of the most harmful diseases on Earth.

The second significant space mission to launch this month will be on the 29 January.

This mission, which has as its main payload materials for the resupply of the International Space Station, will investigate how the absence of gravity plays a role in bone loss. [5]

A team from the Mayo Clinic in Florida will analyse the effect of gravity, or lack thereof, on mesenchymal stem cells derived from bone marrow.

Their findings could end up having an impact on the course of clinical trials for a variety of conditions, such as osteoporosis, that take advantage of the powerful regenerative potential of these type of stem cells to regrow bone tissue.

This mission will be the first of two, with the next scheduled tentatively for the end of the year. This second flight should seek to investigate the effect of microgravity on different cell types that similarly occasion either bone formation or loss.

These experiments in space show the truly pioneering research taking place in the field and illustrate the huge potential these incredible cells have for humans on Earth now, and possibly in space in the near future.

Find out more about what stem cells can do by requesting your FREE Welcome Pack below.

Sources

[1] Ax-3 Mission Research. Axiom Space. https://www.axiomspace.com/missions/ax3/research

[2] Vivien Veninga, Emile E. Voest, Tumor organoids: Opportunities and challenges to guide precision medicine, Cancer Cell, Volume 39, Issue 9, 2021, Pages 1190-1201, https://doi.org/10.1016/j.ccell.2021.07.020., https://www.sciencedirect.com/science/article/pii/S1535610821003998

[3] Stem Cell Investigations to Improve Cancer Treatment Among Payloads Flying on Axiom Space’s Third Private Astronaut Mission. ISS National Laboratory. 10 January, 2024, https://www.issnationallab.org/release-ax3-life-science-research/

[4] NSCF Travels with Axiom Space Mission to Continue Innovative Neurodegeneration Research on the International Space Station. National Stem Cell Foundation. 18 January, 2024, https://www.stemcellsinspace.org/blog/2024/1/18/national-stem-cell-foundation-travels-with-axiom-space-mission-to-continue-innovative-neurodegeneration-research-on-the-international-space-station

[5] New Mayo Clinic stem cell research to take flight into space. Mayo Clinic News Network. 18 January, 2024, https://newsnetwork.mayoclinic.org/discussion/new-mayo-clinic-stem-cell-research-to-take-flight-into-space/


AdobeStock_232479875-980x551-1.jpeg

A new study conducted by researchers at the Mayo Clinic has found that stem cell treatment for patients with advanced heart failure offers an improved quality of life.

As many as 100,000 people are admitted to hospital in the UK every year due to heart attacks [1]. Heart attacks can lead to heart failure, where damage to cardiac muscles makes it harder for blood to be pumped around the body.


Adita_PA_News_Image-1080x675-1.jpg

Aditi Shankar is just eight years old, but she is a pioneer of British medicine thanks to a new way in which she has received a kidney transplant. But first, a little about the girl.

Aditi has the rarest form of dwarfism in the world, Schimke immuno-osseous dysplasia (SIOD). The condition is so rare that it affects only one in one to three million people worldwide. A genetic disorder, SIOD leads to sufferers needing hip transplants, bone marrow transplants, and kidney failure. Unfortunately, the life expectancy of those with this condition is incredibly short at 11 years of age.


shutterstock_274849448-980x653-1.jpg

We’re excited to share some promising results from a recent clinical trial that holds great promise for treating Type 1 diabetes.

This ground-breaking research was presented at the American Diabetes Association‘s 83rd Scientific Sessions on June 23, 2023. The study involved six patients who were administered varying doses of stem cell-derived beta cells. The results were nothing short of remarkable.


year_in_review_2021-1080x675-1.jpg

Stem cell banking gives your child access to a huge range of emerging stem cell therapies that may otherwise be unavailable to them.  The idea is that as they age their perfectly matched, banked stem cells are ready and waiting to repair damaged tissue, for example regenerating cartilage if they suffer from arthritis, or treat debilitating and ultimately terminal age related conditions such as Parkinson’s.


Michael-Schumacher-Covid.png

The doctor who treated seven-time World Champion driver, Michael Schumacher with stem cell therapy following his traumatic brain injury is now using the same treatment to help treat coronavirus.

Back in June, renowned clinical cardiac surgeon Professor Philippe Menasché performed pioneering stem cell treatment on the Formula 1 icon. Schumacher is said to have received transfusions of stem cells to reduce inflammation and help regenerate his nervous system after sustaining a life-changing brain injury almost 7 years ago.


Christmas-2020-Blog.png

2020 has been a difficult year. But the unprecedented challenges posed by the COVID-19 pandemic have also helped drive huge leaps forward in medical science.

We’ve taken some time to reflect and summarise some of the significant advancements that have been made in the last 12 months; both here at Cells4Life, and in the wider stem cell field.