Stem Cell Blog

Употребата на матичните клетки од папочна врвца рапидно се зголемува. Пред 10 години крвта од папочна врвца можеше да лекува околу 40 состојби, но денес таа бројка е над 80. Со нетрпение очекуваме нови терапии за болести и нарушувања како што се дијабет, аутизам и мозочен удар, можете да бидете во тек со најновите случувања во регенеративната медицина на нашиот блог за матични клетки.



epidermolysis-bullosa-980x653-1.jpg

Positive early results have emerged from a clinical trial testing an umbilical cord tissue stem cell therapy for epidermolysis bullosa (EB), a currently incurable group of disorders which causes extremely fragile skin. The therapy has shown promise in relieving symptoms and reducing disease activity in children with a severe form of EB.[1]

What is epidermolysis bullosa? 

EB is a group of inherited genetic disorders that results in easy blistering of the skin and, in many cases, mucous membranes, such as the lining inside the mouth. With EB, painful blisters or open sores will form with even the slightest friction, even from seemingly trivial things such as clothes rubbing against the skin.

This extreme skin weakness means that everyday things most of us don’t think about can be very difficult and painful for people with EB. What’s more, there is currently no cure available for EB.[2] Because of this, patients and their families have to be constantly careful, avoiding anything that might hurt the skin as much as possible. Dealing with the blisters and sores that do happen, to avoid them spreading further or causing infections, is also a painful, time-consuming daily task.[3] The blisters need to be lanced and dressed, in order to avoid them causing larger, painful wounds that take a long time to heal.[2] Itching is also very common, with patients describing an unbearable, constant itch. Moreover, relief from the itching is difficult, as scratching, too, can tear the skin, create blisters and make existing wounds worse.[4]

Depending on the type of EB and severity of the disease, sufferers may be left with deformities from scar tissue, such as fused fingers or toes, and limited motion. If blisters form inside the mouth or in the oesophagus, eating can also become an issue. Skin cancer and sepsis are potentially lethal consequences.[5]

There are four main types of EB, varying in severity: EB simplex, dystrophic EB, junctional EB and Kindler syndrome.[3] Among these, recessive dystrophic EB (RDEB) is one of the most severe types, and in fact one of the most severe hereditary genetic disorders as a whole[6]. In other words, as the name implies, it is recessively inherited, with two parents who are both asymptomatic carriers of the disease having a one in four chance of having a child affected by it.[7] Patients with this type of EB also have a higher chance of developing skin cancer, and their life expectancy is just age 30.[8]

Trial structure and objectives

The study on the cord tissue stem cell therapy for EB, called MissionEB, focused on children with the two most severe types of RDEB, designated “intermediate” and “severe” in disease classification. It was led by the EB team at Great Ormond Street Hospital[1], one of the four centres of excellence for EB treatment in the UK[9].

A prior small-scale clinical trial had found benefits from a therapy consisting of mesenchymal stem cells (MSCs) derived from bone marrow, with effects lasting 3-6 months.[10] Following this, researchers posited that MSCs derived from umbilical cord tissue (UC-MSCs) could prove more effective.[11] Therefore, the study aimed at testing whether repeated doses of UC-MSCs could be a safe and effective treatment for severe RDEB.

The study enrolled 30 children, and was a randomised, placebo controlled, double blinded cross-over trial. In other words, patients were randomly assigned to the treatment or placebo group. Furthermore, neither the patients nor the researchers were aware which study group each patient was in. After an initial assessment at 9 months, groups were then switched, with the original treatment group receiving placebo and vice versa.[11][12]

Preliminary results of the study show that the treatment improved patients’ quality of life, reducing itch and pain. The range of improvements was broader for patients with less severe RDEB; children younger than 10 also saw improved skin integrity and reduced disease activity. In interviews, both the children and their care givers correctly identified whether they were receiving the treatment or the placebo.[11][1]

An open-label extension study is now ongoing. In this study, patients who completed the original MissionEB trial will receive three cycles of the treatment, at zero, four, and eight months. The severity of their disease will then be assessed at four, eight, and twelve months.[1]

The future of cord tissue stem cell therapy for EB

Following an agreement with Great Ormond Street Hospital for use of the data, biotechnology company Inmune Bio is marketing the treatment as CORDStrom. The company intends to seek approval for the treatment in the US, UK and EU in the nearby future.[11]

At Cells4Life, we have previously released a cord tissue sample for the treatment of epidermolysis bullosa. More in general, studies like these show the incredible potential of umbilical cord stem cells as treatment for rare, disabling diseases. To learn more about how you could preserve these powerful stem cells for your baby and family, fill in the form below to receive your free guide to cord blood banking.

References

[1] Bryson, S. (2025). Stem cell therapy seen to reduce itch, pain in RDEB children in trial. Epidermolysis Bullosa News. https://epidermolysisbullosanews.com/news/stem-cell-therapy-reduces-itch-pain-rdeb-children-trial/

[2] NHS (2021). Treatment – Epidermolysis bullosa. https://www.nhs.uk/conditions/epidermolysis-bullosa/treatment/

[3] Bionews Staff (2017). What Is Epidermolysis Bullosa? https://epidermolysisbullosanews.com/what-is-epidermolysis-bullosa/

[4] Danial, C., et al. (2014). Prevalence and Characterization of Pruritus in Epidermolysis Bullosa. Pediatric Dermatology, 32(1), pp.53–59. doi:https://doi.org/10.1111/pde.12391

[5] Mellerio, J.E., et al. (2025). Milestone events in recessive dystrophic epidermolysis bullosa (RDEB): findings of the PEBLES Study. Clinical and Experimental Dermatology. doi:https://doi.org/10.1093/ced/llaf009

[6] Soro, L., Bartus, C. and Purcell, S. (2015). Recessive Dystrophic Epidermolysis Bullosa: A Review of Disease Pathogenesis and Update on Future Therapies. The Journal of Clinical and Aesthetic Dermatology, 8(5), p.41. https://pmc.ncbi.nlm.nih.gov/articles/PMC4445895/

[7] DEBRA UK. (2024). Dystrophic epidermolysis bullosa (DEB). https://www.debra.org.uk/get-support/eb-support-and-resources/about-eb-debra-uk/dystrophic-epidermolysis-bullosa/

[8] EB Research Partnership. (2025). Dystrophic EB (DEB). https://www.ebresearch.org/dystrophic.html

[9] DEBRA UK. (2025). NHS specialist EB healthcare. https://www.debra.org.uk/get-support/eb-support-and-resources/eb-professionals/specialist-eb-healthcare/

[10] Petrof, G., et al. (2015). Potential of Systemic Allogeneic Mesenchymal Stromal Cell Therapy for Children with Recessive Dystrophic Epidermolysis Bullosa. Journal of Investigative Dermatology, 135(9), pp.2319–2321. doi:https://doi.org/10.1038/jid.2015.158

[11] Cure EB. (2025). Mission EB. https://cure-eb.org/research-portfolio/mission-eb/

[12] ISRCTN. (2025). Mesenchymal stromal cell therapy for children with recessive dystrophic epidermolysis bullosa. https://www.isrctn.com/ISRCTN14409785


cord-blood-for-cerebral-palsy-980x845-1.jpg

A review paper, newly published in the prestigious Pediatrics journal, statistically demonstrates that cord blood therapy for cerebral palsy is an effective treatment to improve the motor skills of children suffering from this condition. The paper is an analysis of data from eleven studies on over 400 children with cerebral palsy.

What is cerebral palsy?

Cerebral palsy is a group of motor disorders that affect movement, posture and coordination. It’s caused by damage to the brain while it is still developing. This happens most often before birth, but sometimes during or immediately after.

The severity of the condition can vary greatly. Symptoms include lack of balance and muscle coordination, muscles that are either too stiff or too floppy, exaggerated reflexes, and issues with walking, eating and speech.[1][2]

There is currently no cure for cerebral palsy. Available treatment includes physiotherapy, occupational therapy, medication and sometimes surgery. This is aimed at helping people with the condition to be as healthy and independent as possible.[3]

What did the analysis find? 

According to the analysis results, children who underwent cord blood therapy for cerebral palsy combined with rehabilitation saw a significantly greater improvement in gross motor skills compared to those gained from rehabilitation alone. The improvements reached their peak between 6 and 12 months after the cord blood therapy; the data also indicates that higher cell doses per kg of patient weight result in bigger improvements. This is consistent with the current hypothesis that the treatment works by reducing inflammation in the brain and stimulates tissue repair, leading to improvements in brain connectivity.[4][5]

After six to twelve months, the majority (68%) of children who underwent cord blood therapy for cerebral palsy scored higher on the gross motor function measure scale used for cerebral palsy (GMFM-66) than the entire control group. The analysis did, however, also find that the treatment had better results in younger children, as well as those with less severe cerebral palsy. Overall, the children who saw the best results were those under the age of 5 who had some ability to walk, whether unaided or with support, before the therapy.[4][5]

What does this mean for the treatment of cerebral palsy?

Cerebral palsy remains one of the most common motor disorders in childhood. It can be accurately diagnosed as early as 6 months of age, which is well within the bracket of highest therapy effectiveness identified by the analysis. What’s more, the sooner a child is treated, the better. This is because a single unit of cord blood will result in a higher cell dose per kg when a child is still small, and may even be enough for multiple treatments.[4]

At the present time, cord blood therapy is not approved as a treatment for CP in any country. This is due to it still requiring large-scale, phase 3 trials before it can reach this approval. Therefore, it is only available through clinical trials as well as expanded access or compassionate use programmes.[4]

This lack of approval means that, although there are cord blood units available for use in public banks, it may not be possible to use these for treatment in the immediate without gaining access to a clinical trial. Even then, the clinical trial may require the cord blood used in the treatment to be autologous (the child’s own), or to come from a sibling donor. Expanded access programmes may also have the same requirements.

A child having access to their own banked cord blood, or a sibling’s, could therefore be essential to ensure treatment can happen during the window of opportunity that could achieve the best results. To learn more about how you could preserve this important health resource for your child and your family, fill in the form below to request your free Parents’ Guide to Cord Blood Banking.

References

[1] Mayo Clinic (2023). Cerebral palsy – symptoms and causes. https://www.mayoclinic.org/diseases-conditions/cerebral-palsy/symptoms-causes/syc-20353999

[2] NHS (2023). Overview – Cerebral Palsy. https://www.nhs.uk/conditions/cerebral-palsy/

[3] NHS (2023). Treatment – Cerebral palsy. https://www.nhs.uk/conditions/cerebral-palsy/treatment/

[4] Parent’s Guide to Cord Blood (2025). Cord Blood Proven Effective for Cerebral Palsy. https://parentsguidecordblood.org/en/news/cord-blood-proven-effective-cerebral-palsy

[5] Finch-Edmondson, M., et al. Cord Blood Treatment for Children With Cerebral Palsy: Individual Participant Data Meta-Analysis. Pediatrics 2025; e2024068999. 10.1542/peds.2024-068999.


lymphoma_lymph_node-980x653-1.jpg

A phase 1 trial of a novel cell therapy for lymphoma that is highly resistant to standard treatment (highly refractory lymphoma) has published very positive results in the Nature Medicine journal. The therapy, which uses natural killer (NK) cells derived from cord blood, resulted in complete remission in two thirds of the treated patients.

What are natural killer cells? 

NK cells are a specific type of white blood cell, a part of the immune system which targets and destroys infected and cancerous cells. These cells patrol the body, determining which cells should be destroyed based on whether they receive the correct signals from them or not.[1]

Their ability to kill cancerous cells makes NK cells ideal for the development of cell therapies to treat cancer. These typically hinge on modifying the NK cells, granting them the ability to recognise and destroy cancerous cells they would otherwise ignore.[2] Such is the case for this novel cord blood cell therapy for lymphoma, a type of blood cancer which affects lymphocytes, white blood cells which are part of the immune system. Normally, lymphocytes help the body fight off infection. With lymphoma, however, they do not work correctly and can multiply out of control, accumulating quickly in lymph nodes and other organs in the lymphatic system, such as the spleen and liver.[3][4]

Thanks to advances in medicine, lymphoma is generally considered a very treatable type of cancer, with 5-year survival rates averaging between 74% and 89% depending on the type of lymphoma.[5][6][7] However, sometimes the cancer still resists treatment or reoccurs afterwards, leaving patients with refractory or relapsed lymphoma with few options and a poor prognosis.[8] This can happen in between 10%-40% of cases, depending on the type of lymphoma, the patient age at diagnosis, and how advanced the disease was at diagnosis.[9][10] This is the need this cord blood cell therapy for lymphoma is attempting to fill.

What does the new therapy entail?

Researchers first isolated NK cells from cord blood and then activated them using a combination of cytokines.[8] Cytokines are proteins which the immune system uses to send signals;[11] using them to activate NK cells stimulates their cancer-fighting abilities.[12]

Then, the antibody AFM13 was added to the NK cells, enabling them to target the CD30 protein. This protein is found on the surface of cancerous cells in specific types of lymphoma, primarily in Hodgkin lymphoma but also other varieties.[8]

Following chemotherapy, doctors infused a dose of the treated NK cells into patients. This was then followed by three doses of the AFM13 antibody, administered once a week.

Why is this therapy so important?

The 42 patients who took part in the trial all had highly refractory lymphoma, having received a median of seven prior treatment courses. In spite of this, the therapy achieved an overall response rate of 92.9%, with 66.7% of patients experiencing complete remission. In patients with Hodgkin lymphoma specifically, the rates were even higher, with a complete remission rate of 73% and an overall response rate of 97.3%.

Eleven patients remained in complete remission for at least 14 months, with this lasting, for some, up to 40 months after receiving the therapy. Five patients remained in complete remission without any further treatment, and six went on to receive a stem cell transplant.

At a median follow-up of 20 months, the therapy led to complete disease remission in 26.2% patients, or about one in four patients. The two-year overall survival rate was 76.2%.[8] These are encouraging and very positive results, particularly considering how resistant their cancer had been to previous treatment. Moreover, the therapy proved to be safe and well-tolerated, with no adverse side effects beyond those caused by the chemotherapy.

This trial was a small-scale one, primarily aimed at confirming the safety of the treatment and determining an optimal dose. Larger trials are therefore needed before this therapy can become available to patients.

Still, trials like this, as well as many others currently ongoing, highlight the strong curative potential of cord blood cells. To discover more about cord blood cells, and find out how you could preserve them for your baby and family’s potential future use, fill in the form below to request our free guide.

References

[1] Cleveland Clinic (2023). What Are Natural Killer Cells (NK Cells)? https://my.clevelandclinic.org/health/body/24898-natural-killer-cells

[2] Eissmann, P. (2016). Natural Killer Cells | British Society for Immunology. https://www.immunology.org/public-information/bitesized-immunology/cells/natural-killer-cells

[3] Blood Cancer UK. Lymphoma. https://bloodcancer.org.uk/understanding-blood-cancer/lymphoma/

[4] Mayo Clinic (2024). Lymphoma – Symptoms and Causes. https://www.mayoclinic.org/diseases-conditions/lymphoma/symptoms-causes/syc-20352638

[5] LLS (2025). Lymphoma Survival Rate By Age. https://lls.org/blog/lymphoma-diagnosis-survival-rate-age-prognosis-and-treatment

[6] Cancer Research UK (2012). Survival | Hodgkin Lymphoma | Cancer Research UK. https://www.cancerresearchuk.org/about-cancer/hodgkin-lymphoma/survival

[7] Cancer Research UK (2011). Survival | non-Hodgkin lymphoma | Cancer Research UK. https://www.cancerresearchuk.org/about-cancer/non-hodgkin-lymphoma/survival

[8] Nieto, Y., et al. (2025). Allogeneic NK cells with a bispecific innate cell engager in refractory relapsed lymphoma: a phase 1 trial. Nature Medicine. doi:https://doi.org/10.1038/s41591-025-03640-8

[9] Radhakrishnan Ramchandren (2012). Advances in the Treatment of Relapsed or Refractory Hodgkin’s Lymphoma. The Oncologist, 17(3), pp.367–376. doi:https://doi.org/10.1634/theoncologist.2011-0258

[10] Harrysson, S., et al. (2021). Incidence of relapsed/refractory diffuse large B-cell lymphoma (DLBCL) including CNS relapse in a population-based cohort of 4243 patients in Sweden. Blood Cancer Journal, 11(1). doi:https://doi.org/10.1038/s41408-020-00403-1

[11] Cleveland Clinic (2023). What are Cytokines? Types and Function. https://my.clevelandclinic.org/health/body/24585-cytokines

[12] Romee, R., et al. (2016). Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Science Translational Medicine, [online] 8(357), p.357ra123. doi:https://doi.org/10.1126/scitranslmed.aaf2341


healthy_ageing-980x653-1.jpg

Getting older is not just about grey hair and wrinkles. The body can deteriorate, losing muscle tone and strength, making daily life activities more difficult and tiring. What’s more, the immune system also weakens, making older adults more likely to get sick and less able to fight off infection. Because of this, preventing or reversing the effects of ageing is the key to lifelong health. Although lifestyle changes and exercise can help offset some of these effects[1], researchers are increasingly looking at umbilical cord stem cells for their protective and restorative potential.

Protecting the immune system: the thymus and spleen 

The thymus and spleen are both part of the lymphatic system, which itself is part of the body’s immune system. The thymus is where a type of white blood cells, called T cells, fully mature; these cells control the body’s immune response and attack infected and cancerous cells. The spleen, on the other hand, mainly acts like a filter, removing old or damaged blood cells from the body. It also helps produce white blood cells and destroy bacteria and viruses.[2] Changes in the thymus and spleen during a person’s lifetime mean the immune system gradually becomes less effective, making the person more vulnerable to many illnesses, including infections and cancer.[3][4]

A recent study, performed on a mouse model of ageing, showed that mesenchymal stem cells derived from umbilical cord tissue (UCT-MSCs) could prevent ageing-related changes in the thymus and spleen. The study compared three groups of mice: a control group, an induced-ageing group which received no treatment, and an induced-ageing group which also received treatment with human UCT-MSCs. Upon analysis, the thymus and spleen in the UCT-MSC treatment group were found to more closely resemble those in the control group in size, structure, and potential functionality. Those in the ageing group with no treatment, on the other hand, were significantly atrophied. Moreover, mice in the UCT-MSC treatment group also showed lower levels of inflammation and oxidative stress, lower expression of ageing-related genes, and an improved population of beneficial bacteria in the digestive system.[5]

Strengthening muscles and easing frailty

Losing some muscle mass and strength is a natural part of ageing. In some people, however, the loss becomes so significant the muscles atrophy, a condition called age-related sarcopenia. This condition can make even the simplest task, such as getting out of chairs or climbing stairs, quite difficult. Sarcopenia can also be a complicating factor leading to frailty, which increases the risk of falls, broken bones, disability and death.[6][7] Here, too, UCT-MSCs could prove beneficial as a treatment.

A pre-clinical study conducted on mice, specifically on sarcopenia, found that treatment with human UCT-MSCs could counteract muscle ageing. Mice in the treatment group showed improvements in grip strength and performed better in a fatigue test compared to the group which received no treatment. Furthermore, muscle analysis and comparison between groups showed restored muscle functionality in the treatment group.[8]

A different, phase 1/2 clinical trial on elderly patients with diagnosed frailty reported similar results. The study was randomised and double-blinded, and aimed to test both the safety and the effectiveness of UCT-MSC treatment. After a first, baseline evaluation, patients were randomly assigned to either the treatment or the control group. Following two infusions of either UCT-MSCs or placebo at days 1 and 30, they were then evaluated with several follow-up visits over the course of six months. Compared to the control group, patients treated with UCT-MSCs showed improvements in general quality of life, grip strength and walking ability.[9]

Protecting the future, today

Although more research is definitely needed, studies such as these highlight the strong regenerative potential of stem cells from the umbilical cord.

Babies being born today could be part of the first generation to live beyond 100. Having access to their own umbilical cord stem cells could help them gain access to anti-ageing treatments and remain in good health.

To learn more about how to preserve this powerful resource for your baby, as well as more potential uses for umbilical cord and placenta stem cells, complete the form below to request your free guide.

References

[1] NHS England. Preventing frailty. https://www.england.nhs.uk/ourwork/clinical-policy/older-people/frailty/preventing-frailty/

[2] Cleveland Clinic (2023). Lymphatic System. https://my.clevelandclinic.org/health/body/21199-lymphatic-system

[3] Liang, Z., Dong, X., Zhang, Z., Zhang, Q. and Zhao, Y. (2022). Age‐related thymic involution: Mechanisms and functional impact. Aging Cell, 21(8). doi:https://doi.org/10.1111/acel.13671

[4] Turner, V.M. and Mabbott, N.A. (2017). Influence of ageing on the microarchitecture of the spleen and lymph nodes. Biogerontology, 18(5), pp.723–738. doi:https://doi.org/10.1007/s10522-017-9707-7

[5] Xu, J., et al. (2025). Human umbilical cord-derived mesenchymal stem cells improve thymus and spleen functions in d-galactose-induced aged mice. Scientific Reports, 15(1). doi:https://doi.org/10.1038/s41598-025-94364-9

[6] von Haehling, S., Morley, J.E. and Anker, S.D. (2010). An overview of sarcopenia: facts and numbers on prevalence and clinical impact. Journal of Cachexia, Sarcopenia and Muscle, 1(2), pp.129–133. doi:https://doi.org/10.1007/s13539-010-0014-2

[7] Mary Anne Dunkin (2022). Sarcopenia With Aging. WebMD. https://www.webmd.com/healthy-aging/sarcopenia-with-aging

[8] Wang, C., et al. (2023). Clinical-grade human umbilical cord-derived mesenchymal stem cells improved skeletal muscle dysfunction in age-associated sarcopenia mice. Cell Death and Disease, 14(5). doi:https://doi.org/10.1038/s41419-023-05843-8

[9] Zhu, Y., et al. (2024). Safety and efficacy of umbilical cord tissue-derived mesenchymal stem cells in the treatment of patients with aging frailty: a phase I/II randomized, double-blind, placebo-controlled study. Stem Cell Research & Therapy, 15(1). doi:https://doi.org/10.1186/s13287-024-03707-2


doctor_showing_osteoarthritis-980x653-1.jpg

Osteoarthritis, a chronic degenerative joint disease, affects millions of people worldwide and is a leading cause of disability.[1][2] Currently available treatments can offer relief from pain and other symptoms. However, they fail to address the root of the disease, as they cannot effectively restore the damaged joint.[3] A novel stem cell therapy based on cord blood mesenchymal stem cells (UCB-MSCs) is now emerging as a promising regenerative approach. The therapy, called Cartistem, has been shown to regenerate strong, elastic cartilage in the joint, rather than the fibrous, weaker cartilage created by an alternative treatment.[4]

What is osteoarthritis? 

Osteoarthritis is the most prevalent form of arthritis, and primarily affects middle-aged and older adults. It involves the deterioration of the cartilage that protects the ends of bones within a joint. Because cartilage does not contain blood vessels, it has a limited ability to self-repair[5]; with continued deterioration, it disappears entirely, leading to damage and changes to the bones themselves. Symptoms include joint stiffness and pain, as well as reduced range of motion, and can increase over time. Eventually, they can become severe enough to make day-to-day activities more difficult.[1][6]

The risk of osteoarthritis increases with age, although there are other risk factors which can contribute. These include joint injuries, overuse of the joint in work or sports, obesity and genetics.[1] Osteoarthritis can affect any joint in the body, but most frequently appears in the hands, knees, hips and spine.[1] Knee osteoarthritis, in particular, often involves both knees. It can cause pain during walking, especially going uphill or downhill, as well as difficulty straightening the legs and a sensation of the knee “giving way”.[7]

Treatments for knee osteoarthritis

The current standard of care for knee osteoarthritis includes a range of treatments that aim to manage pain, reduce stiffness and improve range of motion. They include both surgical and non-surgical options.

Non-surgical treatment is typically tried at first. This includes pain medication as well as lifestyle changes, such as weight loss and exercise, and assistive devices, such as special footwear, braces, or walking aids.[8][9] If non-surgical treatments have not been effective or the patient’s daily life is seriously affected, doctors then look at surgical treatments. This could be an operation called an osteotomy, where a small section of bone on one side of the joint is removed to realign the joint and shift weight away from damaged parts of the cartilage.[10] Knee replacement, either partial or total, is also an option.[8][9]

Another possibility is a surgical treatment called microfracture or microdrilling. This treatment involves doctors making small holes into the surface of the bone where cartilage is absent. The holes cause blood and bone marrow to coat the surface of the bone, then forming into a clot. Thanks to the stem cells contained in blood and bone marrow, this clot eventually develops into a new layer of cartilage.[11] However, this new cartilage is not as strong as the original cartilage, and can break down more easily,[5][12] meaning any improvement is temporary.

A new therapeutic option

Cartistem is an off-the-shelf stem cell therapy developed in South Korea, where it has been approved for knee osteoarthritis treatment since 2012.[13] It consists of a combination of allogeneic UCB-MSCs and hyaluronic acid hydrogel. Applied to the area of damaged cartilage during surgery, the stem cells stimulate cartilage regeneration.[14]

Although Cartistem can be considered comparable to microdrilling in terms of the underlying process, a recent study has shown that this therapy can regenerate cartilage that is stronger and more resilient. The study, the results of which were recently presented at the 2025 annual meeting of the American Academy of Orthopaedic Surgeons, directly compared the results of Cartistem to those of microdrilling.[4]

According to researchers, Cartistem repaired a greater surface area than microdrilling, producing stronger cartilage which contained more collagen and had improved stiffness and elasticity. In contrast, microdrilling produced weaker, more fibrous cartilage, and in one out of five patients resulted in no cartilage regeneration at all.[14]

On the strength of the results from this and other studies, the FDA granted approval to proceed directly to a phase 3 clinical trial in the United States. A phase 3 trial is also underway in Japan.[4]

The regenerative power of cord blood stem cells

The strong potential of UCB-MSCs for the treatment of osteoarthritis is well-documented, with several recent studies highlighting their positive effects.[15][16][17]

Cartistem is a proprietary, off-the-shelf therapy, using allogeneic (donor) UCB-MSCs. However, as therapies are still being discovered and developed, it is entirely possible that a patient having access to their own cord blood stem cells could make the difference in terms of effectiveness. This could be the case not only for osteoarthritis, but for also for many other illnesses and diseases.

To discover more about cord blood stem cells, and how you could preserve them for your baby for potential future treatment, fill in the form below to request your free guide to cord blood banking.

References

[1] Mayo Clinic (2021). Osteoarthritis. https://www.mayoclinic.org/diseases-conditions/osteoarthritis/symptoms-causes/syc-20351925

[2] Neogi, T. (2013). The Epidemiology and Impact of Pain in Osteoarthritis. Osteoarthritis and Cartilage, 21(9), pp.1145–1153. doi:https://doi.org/10.1016/j.joca.2013.03.018

[3] Mayo Clinic (2021). Osteoarthritis – Diagnosis and treatment – Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/osteoarthritis/diagnosis-treatment/drc-20351930

[4] Ji-hye, K. (2025). MEDIPOST’s stem cell therapy regenerates stronger cartilage than microdrilling, clears path to US phase 3. KBR. https://www.koreabiomed.com/news/articleView.html?idxno=26972

[5] Tuan, R.S., Chen, A.F. and Klatt, B.A. (2013). Cartilage Regeneration. Journal of the American Academy of Orthopaedic Surgeons, 21(5), pp.303–311. doi:https://doi.org/10.5435/jaaos-21-05-303

[6] Johns Hopkins Medicine (2024). Osteoarthritis. https://www.hopkinsmedicine.org/health/conditions-and-diseases/arthritis/osteoarthritis

[7] NHS (2019). Symptoms – Osteoarthritis. https://www.nhs.uk/conditions/osteoarthritis/symptoms/

[8] NHS (2023). Treatment – Osteoarthritis. https://www.nhs.uk/conditions/osteoarthritis/treatment/

[9] Cleveland Clinic (2021). Osteoarthritis of the Knee: Symptoms, Causes and Treatments. https://my.clevelandclinic.org/health/diseases/21750-osteoarthritis-knee

[10] Cleveland Clinic. (2022). Osteotomy (Bone Cutting): What It Is, Procedure & Recovery. https://my.clevelandclinic.org/health/articles/22688-osteotomy

[11] Royal Orthopaedic Hospital. Microfracture/Chondroplasty of the Knee. https://roh.nhs.uk/services-information/knees/microfracture-chondroplasty-of-the-knee

[12] MedlinePlus. Knee microfracture surgery: MedlinePlus Medical Encyclopedia. https://medlineplus.gov/ency/article/007255.htm

[13] MEDIPOST. (2022). CARTISTEM®. https://en.medi-post.co.kr/cartistem/

[14] Jung, S., et al. (2024). Implantation of hUCB‐MSCs generates greater hyaline‐type cartilage than microdrilling combined with high tibial osteotomy. Knee Surgery Sports Traumatology Arthroscopy, 32(4), pp.829–842. doi:https://doi.org/10.1002/ksa.12100

[15] Jung, S.-H., et al. (2024). Allogeneic umbilical cord blood-derived mesenchymal stem cell implantation versus microdrilling combined with high tibial osteotomy for cartilage regeneration. Scientific Reports, [online] 14(1). doi:https://doi.org/10.1038/s41598-024-53598-9

[16] Zhang, P., Dong, B., Yuan, P. and Li, X. (2023). Human umbilical cord mesenchymal stem cells promoting knee joint chondrogenesis for the treatment of knee osteoarthritis: a systematic review. Journal of Orthopaedic Surgery and Research, 18(1), p.639. doi:https://doi.org/10.1186/s13018-023-04131-7

[17] Prodromos, C., Finkle, S., Rumschlag, T. and Lotus, J. (2020). Autologous Mesenchymal Stem Cell Treatment is Consistently Effective for the Treatment of Knee Osteoarthritis: The Results of a Systematic Review of Treatment and Comparison to a Placebo Group. Medicines, 7(8), p.42. doi:https://doi.org/10.3390/medicines7080042


cell-therapy-for-cerebral-palsy-980x588-1.jpg

A new study on cell therapy for cerebral palsy has, for the first time, directly compared the efficacy of two different treatments. Although more research is needed, the study’s results offer valuable insights for future clinical trials tackling this challenging disorder.

The challenges of cell therapy for cerebral palsy 

Over the past two decades, cell therapy has emerged as a promising treatment for cerebral palsy. In particular, mononuclear cells from cord blood (UCB-MNCs) and mesenchymal stem cells from cord tissue (UCT-MSCs) have proven to be a safe and effective therapy. Many clinical trials have obtained results showing improvements in patients’ motor function through these cells’ anti-inflammatory, neuroprotective and regenerative properties.

However, efforts to pinpoint the best treatment method have been stymied by significant variations in trial parameters. Differences from study to study can include the type and severity of cerebral palsy, the age of the patients, the cell type, dose and delivery method, whether the study is open-label or blinded, and even the methods and time periods used to monitor improvement. Consequently, no two studies are alike, and results cannot be directly compared.[1][2]

Study methods and goal

The new study, conducted in Iran, is a pooled analysis of the results of two studies, one on UCB-MNTs and one on UCT-MSCs. Both studies were conducted in the same research centre; moreover, to aid in the comparison, the research methodology and other variables were kept the same as much as possible.[3][4][5]

The study patients were aged 4-14 and had spastic cerebral palsy with white matter lesions. After eligibility screening, 108 patients were randomly assigned to the two treatment arms or a control group. Treatment was done via intrathecal (into the spinal fluid) injection, with the control group receiving a sham procedure instead. Researchers then assessed patients’ motor function, quality of life, disability and spasticity after 1, 3, 6 and 12 months.

Both individual studies were double-blinded. Furthermore, all statistical analysis, both for individual studies and for the final pooled comparison, was performed by a blinded statistician.

The individual studies aimed to confirm that UCB-MNCs and UCT-MSCs are a safe and effective treatment for cerebral palsy. Following that, the pooled study analysis compared the effects of the UCB-MNC treatment to those of the UCT-MSC treatment across the study period.

Study results

Both the UCB-MNC treatment and the UCT-MSC treatment reported positive results over time when compared to the control group. Patients in both groups showed improvement in gross motor function and quality of life, as well as reduction in disability and spasticity.[4][5]

A graph showing outcomes of cell therapy for cerebral palsy.
Figure 1. A comparison graph of the two different treatment groups and the control group.[3]

As the figure above shows, researchers found that the UCB-MNC treatment group showed stronger improvements in motor function early on. However, both the UCB-MNC and UCT-MSC groups achieved the same level of improvement at 6 months post treatment. At twelve months after treatment, there was some gradual deterioration of the improvements; however, researchers noted that UCT-MSCs did seem to result in more sustainable changes, with patients seeing less deterioration compared to the UCB-MNC group.[3]

Due to this deterioration, researchers posit that repeated doses at regular intervals may be the best route to continued improvement.[1] They also suggest that future trials should investigate treatments combining both UCB-MNCs and UCT-MSCs, as it may prove more effective than individual ones.[3]

The future of medicine

Researchers stress that this study is only a start, and further comparative trials and research are needed. Although both UCB-MNCs and UCT-MSCs offer positive results, there is still no certainty on which cell type and source will prove most effective treatment. This is true not only for cerebral palsy, but also for other illnesses and diseases for which an effective treatment is still being sought.

This uncertainty highlights the importance of comprehensive stem cell banking. By storing as many stem cell sources as possible, you could equip your baby and family with the broadest range of options for future regenerative therapies.

To find out how you could preserve both cord blood and tissue, along with amnion and placenta, for your baby’s potential future use, fill in the form below to request your free guide.

References

[1] Parent’s Guide to Cord Blood. (2025). Cerebral Palsy Response to Cell Therapy as a Function of Time. https://parentsguidecordblood.org/en/news/cerebral-palsy-response-cell-therapy-function-time

[2] Qu, J., et al. (2022). Efficacy and safety of stem cell therapy in cerebral palsy: A systematic review and meta-analysis. Frontiers in Bioengineering and Biotechnology, 10. doi:https://doi.org/10.3389/fbioe.2022.1006845

[3] Nouri, M., et al. (2025). Cell-Based Therapy for Cerebral Palsy: A Puzzle in Progress. PubMed, 26(9), pp.569–574. doi:https://doi.org/10.22074/cellj.2024.2032098.1600

[4] Amanat, M., et al. (2021). Clinical and imaging outcomes after intrathecal injection of umbilical cord tissue mesenchymal stem cells in cerebral palsy: a randomized double-blind sham-controlled clinical trial. Stem Cell Research & Therapy, 12(1). doi:https://doi.org/10.1186/s13287-021-02513-4.

[5] Zarrabi, M., et al. (2022). The safety and efficacy of umbilical cord blood mononuclear cells in individuals with spastic cerebral palsy: a randomized double-blind sham-controlled clinical trial. BMC Neurology, 22(1). doi:https://doi.org/10.1186/s12883-022-02636-y.


anatomical_heart_model-980x551-1.jpg

Scientists have shown that muscle patches grown from stem cells can be used to strengthen and help repair a failing heart. In a breakthrough clinical trial, ten patches containing 400 million cells were implanted on the heart of a 46-year-old woman who was suffering from heart failure. The results, along with results from earlier studies which tested the same procedure in monkeys, have been published in Nature[1]

What is heart failure?

Heart failure is when the heart is too weak or stiff and, as a result, cannot pump blood around the body as well as it should. It can have a variety of causes, from heart disease and heart attacks to high blood pressure and inflammation.[2][3]

Heart failure is a long-term condition which gradually gets worse over time. Currently, it is considered an incurable condition; it can only be treated to keep the symptoms under control with medication and, sometimes, surgery. In severe cases of heart failure, a heart transplant may be necessary. However, there is a shortage of hearts for transplantation, so patients may have to wait several years before one becomes available.[4]

Development of the therapy

The team of researchers, led by Prof. Zimmermann from University Medical Center Göttingen, Germany, coaxed stem cells to grow into heart muscle and connective tissue cells. They then mixed these cells with collagen gel to create patches which could be applied to the outside surface of the heart using a minimally invasive surgery.

After initial studies in vitro and in small animal models of heart failure confirmed the treatment had potential, the patches were first tested in monkeys. The team implanted the patches into six rhesus macaques with heart failure. Three of the monkeys received two patches, while the other three received five. These monkeys were also all treated with immunosuppressive drugs. A second group of seven monkeys remained untreated as a control.

The implanted cells remained smaller than the monkeys’ own heart muscle cells. However, the patches led to an improvement in heart function compared to the control monkeys, thickening the heart’s muscle and increasing its pumping power.[5]

First in-human trial

The success of the trial in monkeys led to the approval of a first-in-human phase 1/2 trial, called BioVAT-HF, which began in 2021 and is currently ongoing.[6][7][8]

The trial has so far recruited 19 patients. The first of these, a 46-year-old woman, had severe heart failure and was waiting for a heart transplant.[1] The researcher team implanted the muscle patches on her heart; she also received immunosuppressive drugs of the same type normally used for transplants. Three months later, the patient was lucky enough to be the recipient of a successful heart transplant.

Upon analysis of her old heart, scientists found that the implanted patches had survived and had formed blood vessels. In other words, they had integrated with the heart without any side effects.

The therapy is still in the early stages of research, and Zimmermann is very clear that it is not yet a replacement for a heart transplant. Rather, it is a supportive treatment for patients in advanced stages of heart failure, who are waiting for a transplant and are under palliative care.

Still, these are incredibly exciting results, which could prove to be a game-changer for the treatment of heart failure. The research team is continuing the clinical trial. In addition, they are testing new patch designs in monkeys in hopes of minimising the need for immunosuppressive drugs.

Stem cells: the future of medicine

This study is one more example of how stem cells are shaping research through their applications in regenerative medicine.

The stem cells used in this particular clinical trial are allogeneic (donor) induced pluripotent stem cells (iPSCs). When receiving a donor transplant, there is always a risk of rejection, hence the need for immunosuppressive drugs.

Your baby’s umbilical cord is a rich source of stem cells, among the most naïve and potent your baby will ever have. They could be used for similar therapies in the future, should your baby need them. What’s more, they could be used without risk of rejection: they are your baby’s own cells, their own perfect genetic match.

You only get one opportunity to collect and store these cells: in the 15 minutes after your baby is born. To find out more about how you can preserve this precious resource, fill in the form below to request your free guide to cord blood banking.

References

[1] Naddaf, M. (2025). ‘Breakthrough’ stem-cell patches strengthened a woman’s failing heart. Nature. doi:https://doi.org/10.1038/d41586-025-00273-2

[2] NHS (2022). Heart failure. https://www.nhs.uk/conditions/heart-failure/

[3] Mayo Clinic (2023). Heart failure. https://www.mayoclinic.org/diseases-conditions/heart-failure/symptoms-causes/syc-20373142

[4] NHS (2022). Treatment – Heart Failure. https://www.nhs.uk/conditions/heart-failure/treatment/

[5] Jebran, A.-F., et al. (2025). Engineered heart muscle allografts for heart repair in primates and humans. Nature. doi:https://doi.org/10.1038/s41586-024-08463-0

[6] Dzhk.de. (2024). Safety and Efficacy of Induced Pluripotent Stem Cell-derived Engineered Human Myocardium as Biological Ventricular Assist Tissue in Terminal Heart Failure (BioVAT-DZHK20). https://dzhk.de/en/research/clinical-research/dzhk-studies/study/detail/biovathfdzhk20

[7] Gavenis, K., University Medical Center Goettingen, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), University Medical Center Freiburg and Repairon GmbH (2023). Safety and Efficacy of Induced Pluripotent Stem Cell-derived Engineered Human Myocardium as Biological Ventricular Assist Tissue in Terminal Heart Failure. clinicaltrials.gov. https://clinicaltrials.gov/study/NCT04396899

[8] Dzhk.de. (2025). DZHK-Studie BioVAT-HF-DZHK20. https://biovat.dzhk.de


sun_damage-980x842-1.jpg

A recent study, carried out both in vitro and in vivo on a mouse model, has found that extracellular vesicles derived from adipose (fat) and umbilical cord mesenchymal stem cells could have a regenerative effect on sun-damaged skin.[1]

Sun damage causes and consequences

Unprotected exposure to harmful ultraviolet (UV) rays from the sun damages the DNA in your skin, ageing it prematurely. This is called photoaging, or sun damage, and can take several forms:[2] [3] [4]

  • Wrinkles and skin thickening: UV rays break down collagen and elastin, proteins which give your skin its structure and elasticity. As a result, skin becomes thicker and wrinkled over time, beyond what would normally be caused by ageing.

  • Sun spots, redness or blotchiness: skin cells produce melanin as a reaction to UV rays, in an attempt to protect against further sun damage. This is the same process that gives you a tan. However, over time, the damaged skin becomes permanently, unevenly pigmented, causing darker patches often called sun spots. This can also take the form of broken blood vessels, causing permanent redness or blotchiness. This happens particularly in areas frequently exposed to the sun, such as the face and hands.

  • Skin cancer: too much UV exposure can cause skin cancer. In the UK, overexposure to UV radiation is the cause of 85% of cases of melanoma skin cancers.[5]

What are extracellular vesicles? 

Extracellular vesicles are tiny particles which are generated from cells. They can carry important biomolecules, like fats and proteins, to other cells, working as a messenger of sorts.

Because the contents of extracellular vesicles can vary depending on the originating cells, scientists believe they could be of great importance in medicine. They could serve as a prognostic tool to predict the likely course of diseases, as well as help to cure them.[6]

In particular, extracellular vesicles derived from mesenchymal stem cells could inherit their regenerative properties, and have been a recent focus of research for their therapeutic potential.

What did the study find?

In the study, scientists from Peking Union Medical College, Beijing, China, aimed to investigate the effects of extracellular vesicles derived from adipose mesenchymal stem cells (AMSC-EVs) and umbilical cord mesenchymal stem cells (HUMSC-EVs) on photoaging.

In vitro, AMSC-EVs and HUMSC-EVs had positive effects on keratinocytes (cells which make up the outermost layer of the skin) and fibroblasts (cells which make up the connective tissue in the middle layer of the skin) that had been exposed to UV radiation. Treatment with EVs lowered inflammation and reduced the levels at which various biomarkers of senescence (ageing) were present in cells. Moreover, the treatment boosted cell proliferation and migration, properties which make skin cells better able to heal damage. Similar protective and regenerative effects were also observed using an in-vitro, full-thickness model of human skin.

These positive results prompted further analysis in vivo, using nude mice. The mice were randomly split into four groups, keeping one as the control. The other three groups were first exposed to high doses of UV radiation, then treated, respectively, with phosphate-buffered saline (PBS) as a placebo, with AMSC-EVs and with HUMSC-EVs.

All three groups exposed to UV initially developed deep, wide wrinkles. By the end of the observation period, however, the skin of mice treated with EV showed significantly fewer and thinner wrinkles. Skin analysis showed that EV treatment helped the skin recover water content, and reversed the epidermal thickening caused by UV radiation. The treatment also improved collagen and elastin levels and reduced inflammation. Additionally, there were fewer biomarkers of ageing in the skin cells of treated mice.

The benefits of stem cell banking

Both types of EVs studied proved effective in mitigating photoaging. However, the researchers noted that, in the mouse model, the effects of EVs derived from umbilical cord MSCs seemed better, from a therapeutic point of view, than those of EVs derived from fat tissue MSCs. The skin of the mice in the HUMSC-EV treatment group was noticeably less wrinkled. Additionally, the skin’s water content was much closer to that of the mice who had not been exposed to UV radiation at all, as was the epidermal thickness.

Furthermore, the process of collecting fat tissue for therapies is inherently invasive, but must be undergone if patients wish to use autologous (their own) stem cells as a therapeutic source. Conversely, the collection of stem cells from the umbilical cord is a painless, entirely non-invasive process; however, the cord must have been collected immediately after birth, and the cells and tissues cryogenically stored for future use. If this was not done, the only way to access therapies based on umbilical cord stem cells is the use of allogeneic (donor) cords – something which can encounter any number of issues, from lack of availability to incompatibility or rejection.

To find out more about storing your baby’s umbilical cord stem cells, so they will have them ready and waiting rather than needing to seek out alternative stem cell sources should they ever need regenerative therapies, fill in the form below to request your welcome pack.

References

[1] Zhang, H., et al. (2024). Human adipose and umbilical cord mesenchymal stem cell-derived extracellular vesicles mitigate photoaging via TIMP1/Notch1. Signal Transduction and Targeted Therapy, 9(1). doi:https://doi.org/10.1038/s41392-024-01993-z

[2] Grabel, A. (2019). Photoaging: What You Need to Know About the Other Kind of Aging. The Skin Cancer Foundation. https://www.skincancer.org/blog/photoaging-what-you-need-to-know/

[3] Cleveland Clinic (2022). Sun-damaged Skin: Photoaging, Signs, Causes & Treatment.  https://my.clevelandclinic.org/health/diseases/5240-sun-damage-protecting-yourself

[4] Yale Medicine (2023). Photoaging (Sun Damage). https://www.yalemedicine.org/conditions/sun-damage

[5] Cancer Research UK (2020). Risks and causes of melanoma skin cancer. https://www.cancerresearchuk.org/about-cancer/melanoma/risks-causes

[6] Zhang, Y., Liu, Y., Liu, H. and Tang, W.H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell & Bioscience, 9(1). doi:https://doi.org/10.1186/s13578-019-0282-2


cord_blood_leukaemia_treatment-980x980-1.jpg

After two planned transplants from unrelated donors fell through at the very last minute, Australian three-year-old Tommy Bacon is now in remission from a rare, dangerous form of leukaemia following a transplant of the stem cells from his baby sister’s cord blood.[1]

Tommy’s story 

Tommy fell ill not long after his parents discovered they were expecting a second child – a baby girl. When he first started showing signs of illness, his parents and their doctor were not immediately alarmed. They assumed it was just a case of the usual germs picked up at daycare, which he had recently begun attending.

After he developed tonsillitis during a family trip to the UK in May 2023, however, his parents took him to the hospital and insisted he should be admitted. Tests eventually revealed that he had leukaemia. More specifically, he had a form of the disease called juvenile myelomonocytic leukaemia (JMML). What’s worse, he had one of the most high-risk, aggressive variants.

JMML is incredibly rare, with only 1-2 children out of one million being diagnosed with it every year[2]. A stem cell transplant is the only curative treatment option. Without a transplant, however, a child with an aggressive variant of JMML could survive for less than a year.[3]

The search for a donor

Australia’s donor registry had no donor compatible with Tommy, so his parents started a donor drive. Eventually, an international donor was found. Unfortunately, however, the donor pulled out of the donation process a week before Tommy was due to start his pre-transplant chemotherapy.

By then, Tommy’s baby sister’s due date was fast approaching, and his parents booked a date for the induction. On the day they were going into hospital, a phone call came that a second donor had been found for Tommy. Still, they decided to have their baby girl’s cord blood collected and stored with an Australian cord blood bank, just in case – although they knew it wasn’t guaranteed that she would be a match for Tommy.

Not long after baby Aria’s birth, the second donor, too, pulled out. The family was heartbroken.

A search for a third donor got underway, but Tommy didn’t have long. Because of this, a decision was made to prepare Tommy’s dad as a half-matched (haploidentical) donor. Such a transplant would not have been ideal, since haploidentical transplant recipients are at higher risk of developing post-transplant complications[4]. Absent a perfect match, though, this was Tommy’s last hope.

Then, the cord blood bank called: they had tested Aria’s cord blood, and she was a perfect match for Tommy.

Within a few weeks, Tommy received his transplant. Four months later, he was in remission.

The importance of family cord blood banking

Tommy’s story highlights the importance of family stem cell banking. By choosing to bank your baby’s cord blood stem cells, they will always be ready and waiting should your baby, or another family member, need them.

Their cord blood stem cells are guaranteed to be their own perfect genetic match. There is also a 25% chance they will be a perfect match for a sibling, and a 50% chance of a partial match. Moreover, they are always a partial match for both parents. This is why it can be so important to bank cord blood for every baby in the family, rather than just one.

Stem cells are being heavily investigated in the field of regenerative medicine to treat a wide variety of illnesses and injuries that are currently considered incurable. There are over 7500 clinical trials currently investigating  both autologous (a patient’s own stem cells) and allogeneic (donor stem cells) uses of stem cells, in the hopes of developing new therapies.

These therapies aim to take advantage of the regenerative qualities of stem cells to aid in healing injuries such as spinal cord damage, heart disease, brain injury, arthritis and type 1 diabetes.

By saving your baby’s cord blood stem cells, you can give your baby and family a better chance of accessing these therapies, should they need one in the future.

“I would strongly recommend that if you’re thinking about getting cord blood collected, do it!” says Tommy’s mum, Kylie. “If it can change a life in such a huge way, why would you not?”[5]

To find out more about how cord blood banking works, and how it could safeguard your family’s health, fill in the form below to request a free welcome pack.

References

[1] Gannon, G. (2025). Aria was a miracle stem cell transplant donor for her brother. The Australian Women’s Weekly. https://www.womensweekly.com.au/news/real-life/stem-cell-transplant-donor/

[2] St. Jude Care & Treatment. Juvenile Myelomonocytic Leukemia Treatment. https://www.stjude.org/care-treatment/treatment/childhood-cancer/leukemia-lymphoma/juvenile-myelomonocytic-leukemia-jmml.html

[3] Lls.org. JMML treatment outcomes. https://www.lls.org/leukemia/juvenile-myelomonocytic-leukemia/treatment/treatment-outcomes

[4] Anthony Nolan. Haploidentical stem cell transplants. https://www.anthonynolan.org/patients-and-families/understanding-stem-cell-transplants/haploidentical-stem-cell-transplants

[5] The Project (2024). Baby Girl’s Stem Cells Save Big Brother’s Life. YouTube. https://www.youtube.com/watch?v=JHwWgqEu_Hs


type_1_diabetes-980x653-1.jpg

A 25-year-old woman from China is the first in the world to have been cured from type 1 diabetes, following an injection of islet cells derived from her own reprogrammed stem cells.

The study, published in the Cell journal, offers real hope to the millions of people worldwide suffering from this disease.

What is type 1 diabetes?

Type 1 diabetes is an autoimmune disease that causes the body’s own immune system to mistakenly attack and destroy insulin-producing cells in the pancreas.[1]

Insulin is a hormone which moves glucose (sugar) from the bloodstream into cells, where it is used for energy, and also helps store any extra glucose.[2]

Without insulin, glucose instead accumulates in the blood, causing a host of severe complications including vision loss, nerve damage, kidney failure, and non-healing ulcers that lead to lower limb amputations.[3]

This means people suffering from type 1 diabetes are dependent on external sources of insulin (through injections or a pump), and have to track and manage their blood sugar levels carefully.

How was the cure developed?

A team at Peking University, Beijing, China, extracted cells from three patients with type 1 diabetes and reverted them to a pluripotent state, from which they could be converted to different cell types in the body. These induced pluripotent stem cells (iPSC) were then used to generate clusters of islet cells, which would then be transplanted back into the patients.

Two and a half months later, the first patient to receive the transplant was producing enough insulin to no longer need external injections; she has remained insulin independent since, for more than a year.

Deng Hongkui, the lead scientist in the study, states the results for the other two patients in the study are also very positive. Those patients would have reached the one-year mark in November; it is hoped that when the results are published the trial could be expanded to more patients.[4]

Why is this trial important?

Islet cell transplantation can be an effective treatment for diabetes. In the past, this has relied on islet cells collected from organ donors, which are not sufficient to meet growing demand and require transplant recipients to use immune-suppressant medication to prevent transplant rejection.

A novel therapy developed by Vertex, currently undergoing clinical trials, aims to solve that issue by deriving islet cells from stem cells; however, this therapy also uses donated stem cells as a source, and thus requires the use of immune-suppressant medication.

It is hoped that the use of autologous (own) stem cells will remove the need for this medication. Since the patient studied was already on immune-suppressants due to a liver transplant, this is not a certainty; because type 1 diabetes is an autoimmune condition, there is still a risk that the immune system could attack the newly-transplanted islets regardless. However, Deng and his team aim to develop islet cells that can entirely evade the immune response.

The importance of banking stem cells

Although further study is required to evaluate the effectiveness of this therapy, breakthroughs like this highlight the potential of stem cells in the development of treatments for life-altering, chronic conditions such as type 1 diabetes.

By banking your baby’s cord stem cells, you can make sure they can be used for regenerative therapies like this, should your baby them in the future. To find out more about saving these powerful cells for your baby, download your free Welcome Pack by filling in the form below.

References

[1] Diabetes UK (2023). What causes type 1 diabetes? https://www.diabetes.org.uk/about-diabetes/type-1-diabetes/causes

[2] Diabetes UK (2022). What is insulin? https://www.diabetes.org.uk/about-diabetes/looking-after-diabetes/treatments/insulin/what-is-insulin

[3] Diabetes UK (2024). Complications of diabetes. https://www.diabetes.org.uk/about-diabetes/complications

[4] Mallapaty, S. (2024). Stem cells reverse woman’s diabetes — a world first. Nature. doi:https://doi.org/10.1038/d41586-024-03129-3