Stem Cell Blog

Употребата на матичните клетки од папочна врвца рапидно се зголемува. Пред 10 години крвта од папочна врвца можеше да лекува околу 40 состојби, но денес таа бројка е над 80. Со нетрпение очекуваме нови терапии за болести и нарушувања како што се дијабет, аутизам и мозочен удар, можете да бидете во тек со најновите случувања во регенеративната медицина на нашиот блог за матични клетки.



stroke_in_the_brain-980x918-1.jpg

A recent study has found that a stem cell therapy could reduce epileptic symptoms after stroke and help the brain recover. The study was performed at the Gladstone Institute of Neurological Disease in California, USA, using a rat model of stroke.

Stroke basics

A stroke is a medical condition which causes the death of cells in the brain. This, in turn, stops the brain from working properly. There are two main types of stroke: haemorrhagic, caused by bleeding in the brain, and ischemic, caused by the blockage of a blood vessel. Ischemic stroke is by far the most common, accounting for just under 90% of strokes.[1]

Stroke is the second leading cause of death and one of the major causes of disability worldwide.[2] In the UK, it is the single biggest cause of severe disability, causing a range greater than any other condition, including movement issues, visual problems, and speech difficulties.[3]

The goal of the study

The stem cell therapy tested in the study is based on mesenchymal stem cells derived from donor bone marrow. It has already been successful in clinical trials for improving chronic paralysis after traumatic brain injury[4][5]; this led to its approval as a treatment for this issue in Japan[6].

Now, researchers are hoping it could also help reverse brain damage caused by stroke. In particular, they are focusing on brain hyperexcitability, which is a flawed response in the brain that develops in some people after they have had a stroke.

What is brain hyperexcitability?

Put simply, brain hyperexcitability is an increased chance for neurons to activate in response to a specific stimulus. In the case of stroke, this flawed response develops in the brain as it tries to make up for lost functions.

These overly active neurons send out signals that are too frequent or too strong to other regions of the brain. This, in turn, causes serious issues. Brain hyperexcitability can make it difficult to control muscles (spasticity) and can lead to seizures.[7] This means stroke is a leading cause of acquired epilepsy,[8] particularly in people over the age of 35.[9]

Unfortunately, brain hyperexcitability remains not well understood, and there is no treatment available to prevent it[7]. Post-stroke seizures and epilepsy are simply managed, as and when needed, with anti-epileptic drugs.[10]

Study process and findings

Researchers tested the stem cell therapy in a rat model of stroke. A month after rats had a stroke, modified human stem cells were injected into their brains, near the damaged area.

The team then measured electrical activity in the brain to determine the effectiveness of the therapy. Furthermore, they also analysed the structure of the brain and blood cells in detail, so they could study the changes wrought by the stroke and by the therapy.

They found that the stroke had caused hyperexcitability in the rats’ brains. The stem cell therapy, however, had reversed this, returning the brain to normal function. Furthermore, a number of proteins and cells that are important for brain function had also increased.

Additionally, by comparing rats which had received the therapy to control rats, researchers identified molecules in the blood that had changed after the stroke. They further saw that these same molecules were restored to normal by the therapy. Additional analysis found that a week after the transplant, few stem cells remained in the rats’ brain; however, the effects were long-lasting.

Hope for future treatment

This therapy is in the very early stages of research; it remains to be determined whether the reversal of brain hyperexcitability would lead to a reduction of symptoms in actual patients.

Still, studies like these highlight the tremendous regenerative potential of stem cells, and the hope they can offer for the treatment of illnesses and injuries that today are considered incurable.

Today, stroke occurs more than 100,000 times per year in the UK – about once every five minutes. Advances in immediate treatment have meant that the number of patients dying from stroke continues to decrease. Unfortunately, however, rehabilitation hasn’t kept pace, and the number of people living with severe disabilities after stroke continues to increase.[3]

Stem cell therapies for post-stroke disability could prove to be truly lifechanging.

Some of the most potent stem cells that could be used in regenerative therapy come your baby’s umbilical cord and placenta. Both of these are normally thrown away at birth – but they could instead be stored for your baby’s future use. If you want to find out more about this rich source of stem cells, and learn how you could preserve it, fill out the form below to download our free parent’s guide.

References

[1] National Heart, Lung and Blood Institute (2023). Stroke – What Is a Stroke? https://www.nhlbi.nih.gov/health/stroke

[2] Katan, M. and Luft, A. (2018). Global Burden of Stroke. Seminars in Neurology, [online] 38(02), pp.208–211. doi:https://doi.org/10.1055/s-0038-1649503

[3] Brain Research UK (2021). Stroke – Neurological condition. https://www.brainresearchuk.org.uk/neurological-conditions/stroke

[4] Kawabori, M. et al. (2021). Cell Therapy for Chronic TBI. Neurology, 96(8), pp.e1202–e1214. doi:https://doi.org/10.1212/wnl.0000000000011450

[5] Okonkwo, D.O. et al. (2024). Mesenchymal Stromal Cell Implants for Chronic Motor Deficits After Traumatic Brain Injury: Post Hoc Analysis of a Randomized Trial. Neurology, [online] 103(7), p.e209797. doi:https://doi.org/10.1212/WNL.0000000000209797

[6] Neuro Central. (2024). SanBio Obtains Marketing Approval for ‘AKUUGO® Suspension for Intracranial Implantation’ (INN: Vandefitemcel) as a Therapeutic Agent for Improving Chronic Motor Paralysis From Traumatic Brain Injury (TBI). https://www.neuro-central.com/sanbio-obtains-marketing-approval-for-akuugo-suspension-for-intracranial-implantation-inn-vandefitemcel-as-a-therapeutic-agent-for-improving-chronic-motor-paralysis-from-tra/

[7] Klein, B. et al. (2024). Modified human mesenchymal stromal/stem cells restore cortical excitability after focal ischemic stroke in rats. Molecular Therapy. doi:https://doi.org/10.1016/j.ymthe.2024.12.006

[8] Adhikari, Y., Ma, C.-G., Chai, Z. and Jin, X. (2023). Preventing development of post-stroke hyperexcitability by optogenetic or pharmacological stimulation of cortical excitatory activity. Neurobiology of Disease, 184, p.106233. doi:https://doi.org/10.1016/j.nbd.2023.106233

[9] Mayo Clinic (2021). Epilepsy – Symptoms and Causes. https://www.mayoclinic.org/diseases-conditions/epilepsy/symptoms-causes/syc-20350093

[10] Holtkamp, M., Beghi, E., Benninger, F., Kälviäinen, R., Rocamora, R. and Christensen, H. (2017). European Stroke Organisation guidelines for the management of post-stroke seizures and epilepsy. European Stroke Journal, 2(2), pp.103–115. doi:https://doi.org/10.1177/2396987317705536


anatomical_heart_model-980x551-1.jpg

Scientists have shown that muscle patches grown from stem cells can be used to strengthen and help repair a failing heart. In a breakthrough clinical trial, ten patches containing 400 million cells were implanted on the heart of a 46-year-old woman who was suffering from heart failure. The results, along with results from earlier studies which tested the same procedure in monkeys, have been published in Nature[1]

What is heart failure?

Heart failure is when the heart is too weak or stiff and, as a result, cannot pump blood around the body as well as it should. It can have a variety of causes, from heart disease and heart attacks to high blood pressure and inflammation.[2][3]

Heart failure is a long-term condition which gradually gets worse over time. Currently, it is considered an incurable condition; it can only be treated to keep the symptoms under control with medication and, sometimes, surgery. In severe cases of heart failure, a heart transplant may be necessary. However, there is a shortage of hearts for transplantation, so patients may have to wait several years before one becomes available.[4]

Development of the therapy

The team of researchers, led by Prof. Zimmermann from University Medical Center Göttingen, Germany, coaxed stem cells to grow into heart muscle and connective tissue cells. They then mixed these cells with collagen gel to create patches which could be applied to the outside surface of the heart using a minimally invasive surgery.

After initial studies in vitro and in small animal models of heart failure confirmed the treatment had potential, the patches were first tested in monkeys. The team implanted the patches into six rhesus macaques with heart failure. Three of the monkeys received two patches, while the other three received five. These monkeys were also all treated with immunosuppressive drugs. A second group of seven monkeys remained untreated as a control.

The implanted cells remained smaller than the monkeys’ own heart muscle cells. However, the patches led to an improvement in heart function compared to the control monkeys, thickening the heart’s muscle and increasing its pumping power.[5]

First in-human trial

The success of the trial in monkeys led to the approval of a first-in-human phase 1/2 trial, called BioVAT-HF, which began in 2021 and is currently ongoing.[6][7][8]

The trial has so far recruited 19 patients. The first of these, a 46-year-old woman, had severe heart failure and was waiting for a heart transplant.[1] The researcher team implanted the muscle patches on her heart; she also received immunosuppressive drugs of the same type normally used for transplants. Three months later, the patient was lucky enough to be the recipient of a successful heart transplant.

Upon analysis of her old heart, scientists found that the implanted patches had survived and had formed blood vessels. In other words, they had integrated with the heart without any side effects.

The therapy is still in the early stages of research, and Zimmermann is very clear that it is not yet a replacement for a heart transplant. Rather, it is a supportive treatment for patients in advanced stages of heart failure, who are waiting for a transplant and are under palliative care.

Still, these are incredibly exciting results, which could prove to be a game-changer for the treatment of heart failure. The research team is continuing the clinical trial. In addition, they are testing new patch designs in monkeys in hopes of minimising the need for immunosuppressive drugs.

Stem cells: the future of medicine

This study is one more example of how stem cells are shaping research through their applications in regenerative medicine.

The stem cells used in this particular clinical trial are allogeneic (donor) induced pluripotent stem cells (iPSCs). When receiving a donor transplant, there is always a risk of rejection, hence the need for immunosuppressive drugs.

Your baby’s umbilical cord is a rich source of stem cells, among the most naïve and potent your baby will ever have. They could be used for similar therapies in the future, should your baby need them. What’s more, they could be used without risk of rejection: they are your baby’s own cells, their own perfect genetic match.

You only get one opportunity to collect and store these cells: in the 15 minutes after your baby is born. To find out more about how you can preserve this precious resource, fill in the form below to request your free guide to cord blood banking.

References

[1] Naddaf, M. (2025). ‘Breakthrough’ stem-cell patches strengthened a woman’s failing heart. Nature. doi:https://doi.org/10.1038/d41586-025-00273-2

[2] NHS (2022). Heart failure. https://www.nhs.uk/conditions/heart-failure/

[3] Mayo Clinic (2023). Heart failure. https://www.mayoclinic.org/diseases-conditions/heart-failure/symptoms-causes/syc-20373142

[4] NHS (2022). Treatment – Heart Failure. https://www.nhs.uk/conditions/heart-failure/treatment/

[5] Jebran, A.-F., et al. (2025). Engineered heart muscle allografts for heart repair in primates and humans. Nature. doi:https://doi.org/10.1038/s41586-024-08463-0

[6] Dzhk.de. (2024). Safety and Efficacy of Induced Pluripotent Stem Cell-derived Engineered Human Myocardium as Biological Ventricular Assist Tissue in Terminal Heart Failure (BioVAT-DZHK20). https://dzhk.de/en/research/clinical-research/dzhk-studies/study/detail/biovathfdzhk20

[7] Gavenis, K., University Medical Center Goettingen, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), University Medical Center Freiburg and Repairon GmbH (2023). Safety and Efficacy of Induced Pluripotent Stem Cell-derived Engineered Human Myocardium as Biological Ventricular Assist Tissue in Terminal Heart Failure. clinicaltrials.gov. https://clinicaltrials.gov/study/NCT04396899

[8] Dzhk.de. (2025). DZHK-Studie BioVAT-HF-DZHK20. https://biovat.dzhk.de


Doctor_Holding_Heart-980x653-1.jpg

A new clinical trial investigating the use of umbilical cord stem cells to treat chronic heart failure is currently underway.

The Phase II trial, which is the first of its kind in the U.S., is being carried out by researchers at the University of Louisville. It’s also the first time intravenous (IV) delivery will be trialled for the delivery of cell therapy for heart failure. [1]

It’s hoped that this pioneering approach could change the way that heart failure patients are treated.

What is heart failure?

Heart failure arises when the heart can’t pump blood around the body properly. This results in the body being unable to receive the oxygen it needs to function normally.

Heart failure can arise from various causes, with some of the most common being:

  • Cardiomyopathy: A condition where the heart’s muscular wall thickens, making it difficult for the heart to effectively pump blood throughout the body.

  • Heart Attack: A heart attack can cause lasting damage to the heart, impairing its ability to circulate blood efficiently.

  • High Blood Pressure: Chronic high blood pressure puts strain on the heart, gradually reducing its pumping efficiency.

  • Abnormal Heart Rhythms: An irregular, too slow, or too fast heartbeat can disrupt the heart’s normal pumping function. [2]

It’s estimated that heart failure affects more than a million people in the U.K. and at least 64 million people worldwide. [3]

Heart failure usually gets worse over time. However, while there is no cure, there are steps that can be taken to treat and manage symptoms, including surgery, having a pacemaker fitted, medication, and lifestyle changes. [4]

What is the new stem cell trial for heart disease?

The trial, which has been dubbed ‘CATO’, will enrol 60 participants across 3 locations, all of whom would have suffered from ischemic cardiomyopathy – heart failure arising from the damage caused by heart attack.

Conducted on a randomised, double blind and placebo controlled basis to ensure rigorous scientific standards, participants will be split into three groups: a control group, a single dose group and a multiple dose group.

All participants will receive four infusions delivered via IV over the course of 2 months.

The control group will receive four doses of placebo, the single dose group will receive one dose of umbilical cord-derived mesenchymal stem cells (UC-MSCs) and three doses of placebo, and the multiple dose group will receive four doses of UC-MSCs.

The first trial to test the delivery of cell therapy for heart failure in multiple doses, CATO will not only investigate the effectiveness of using UC-MSCs for treating heart failure, but also the effectiveness of their delivery in multiple infusions.

Participants will be monitored at intervals of 2 hours, 1 week, and 2 months after each infusion and then followed for 6 months after all four infusions to monitor the safety and efficacy of the therapy. [5]

Why are umbilical cord stem cells being used in the heart failure trial?

Previous studies have shown that mesenchymal stem cells derived from the umbilical cord have abilities that make them ideal in the treatment of cardiovascular diseases.

These include the ability to differentiate into cardiovascular progenitor cells, to modulate immune responses, and promote growth factors. [6] [7]

These cells, harvested from donated umbilical cords, have shown promise in treating a range of conditions, including ulcerative colitis, Crohn’s disease, and even COVID-19. [8] [9] [10]

Now, for the first time in the United States, they are being tested in heart failure patients.

UC-MSCs offer several advantages in this area over other types of stem cells.

Most notably, UC-MSCs can be isolated, stored frozen and then expanded into large quantities, making them readily available “off the shelf” when needed.

This reduces both the cost and the time required to initiate treatment, making it more accessible to a broader range of patients. [11]

Researchers leading the trial hope that umbilical cord-derived mesenchymal stem cells will provide a new and much needed therapeutic alternative in the treatment of heart failure.

Should I save my baby’s umbilical cord stem cells?

This trial demonstrates the growing interest and potential of umbilical cord stem cells to combat conditions, like heart failure, that are currently incurable.

If you have a history of heart disease in your family, it’s probably worth saving the stem cells from your baby’s umbilical cord.

While the stem cells used in this trial will be sourced from donated umbilical cords, privately storing the stem cells from your baby’s umbilical cord rules out the risk of rejection by ensuring that they always have access to stem cells from their own perfect match: themselves.

It also gives them the best chance of accessing future stem cell therapies currently being developed in clinical trials not just for heart failure but also for diseases and conditions like cancer, stroke, and Parkinson’s disease.

If you or a family member are expecting and want to know more about private stem cell storage, fill out the form below to receive your free Welcome Pack.

References

[1] UofL News (2024, August 6). UofL cardiologist leading clinical trial for high potential new therapy for heart failure. University of Louisville School of Medicine. https://louisville.edu/medicine/news/uofl-cardiologist-leading-clinical-trial-for-high-potential-new-therapy-for-heart-failure

[2] Heart failure. British Heart Foundation. https://www.bhf.org.uk/informationsupport/conditions/heart-failure?gad_source=1&gclid=Cj0KCQjww5u2BhDeARIsALBuLnP2GAM0j5TBp0pX-OL9l3Vgzt8yZWBcKKk8j5T0m_JI8pHKPqZKiY8aAi02EALw_wcB&gclsrc=aw.ds

[3] Nicola Luigi Bragazzi, Wen Zhong, Jingxian Shu, Arsalan Abu Much, Dor Lotan, Avishay Grupper, Arwa Younis, Haijiang Dai, (2021) Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017, European Journal of Preventive Cardiology, Volume 28, Issue 15, December 2021, Pages 1682–1690, https://doi.org/10.1093/eurjpc/zwaa147

[4] (2022, May 19). Overview: Heart failure. NHS. https://www.nhs.uk/conditions/heart-failure/

[5] (2024, June 13). Single or Repeated Intravenous Administration of umbiliCAl Cord Mesenchymal sTrOmal Cells in Ischemic Cardiomyopathy (CATO). ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT06145035

[6] Abouzid, M. R., Ali, K., Kamel, I., Esteghamati, S., Saleh, A., & Ghanim, M. (2023). The Safety and Efficacy of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Patients With Heart Failure and Myocardial Infarction: A Meta-Analysis of Clinical Trials. Cureus, 15(11), e49645. https://doi.org/10.7759/cureus.49645

[7] Bartolucci, J., Verdugo, F. J., González, P. L., Larrea, R. E., Abarzua, E., Goset, C., Rojo, P., Palma, I., Lamich, R., Pedreros, P. A., Valdivia, G., Lopez, V. M., Nazzal, C., Alcayaga-Miranda, F., Cuenca, J., Brobeck, M. J., Patel, A. N., Figueroa, F. E., & Khoury, M. (2017). Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circulation research, 121(10), 1192–1204. https://doi.org/10.1161/CIRCRESAHA.117.310712

[8] Lin, Y., Lin, L., Wang, Q., Jin, Y., Zhang, Y., Cao, Y. and Zheng, C. (2015), Transplantation of human umbilical mesenchymal stem cells attenuates dextran sulfate sodium-induced colitis in mice. Clin Exp Pharmacol Physiol, 42: 76-86. https://doi.org/10.1111/1440-1681.12321

[9] Zhang, J., Lv, S., Liu, X., Song, B., & Shi, L. (2018). Umbilical Cord Mesenchymal Stem Cell Treatment for Crohn’s Disease: A Randomized Controlled Clinical Trial. Gut and liver, 12(1), 73–78. https://doi.org/10.5009/gnl17035

[10] Guo, B. C., Wu, K. H., Chen, C. Y., Lin, W. Y., Chang, Y. J., Lee, T. A., Lin, M. J., & Wu, H. P. (2023). Mesenchymal Stem Cells in the Treatment of COVID-19. International journal of molecular sciences, 24(19), 14800. https://doi.org/10.3390/ijms241914800

[11] UofL News (2024, August 6). UofL cardiologist leading clinical trial for high potential new therapy for heart failure. University of Louisville School of Medicine. https://louisville.edu/medicine/news/uofl-cardiologist-leading-clinical-trial-for-high-potential-new-therapy-for-heart-failure


robina-weermeijer-igwG8aIaypo-unsplash-980x551-1.jpg

In a study first published in April’s edition of Advanced Functional Materials, researchers found that stem cells boost natural repair following cardiac arrest.

The most common consequence of cardiac arrest is brain injury. Decreased blood flow and oxygen to the brain can result in damage to specific areas such as the temporal lobe, which is responsible for memories. [1]

According to the British Heart Foundation, there are around 30,000 out of hospital cardiac arrests in the UK per year, with survival rates of only 1 in 10.

While there are currently steps towards improving these survival rates – mainly public awareness and educational campaigns focused on immediate response [2] – better survival rates potentially means more patients suffering from brain injury, which can range in severity.

What researchers at the University of Maryland School of Medicine in the U.S. have found is that neural stem cells can help with repairing post-cardiac arrest brain damage when their carbohydrate structure is manipulated. [3]

In an animal study using rats, scientists applied sugar molecules to the neural stem cells in a process called glycoengineering.

It’s thought that the application of these sugar molecules provide the neural stem cells with a better chance of retention and integration within the harsh microenvironment of the brain.

Researchers examined the efficacy of the ‘sugar-coated’ neural stem cells that had been pretreated with TProp (the name of the modified sugar molecule applied) with naive human neural stem cells.

They found through subsequent testing that the stem cells that had been pretreated with TProp improved brain function substantially, along with reducing anxiety and depression-related behaviours.

The ability for synapses to modify the strength of their connections (otherwise known as synapse plasticity) also improved, with the TProp group also demonstrating a reduction in neuroinflammation in the central nervous system.

Overall, the findings from the University of Maryland are promising as they indicate that these glycoengineered stem cells could help regenerate connections between synapses in the brain that have been affected by cardiac arrest related injury in humans.

The next steps will involve tests on larger animals before hopefully moving to a clinical study.

If you want to know more about how you can save your baby’s powerful stem cells, fill out the form below for your free welcome pack.

References

[1] (2023, July 7). Can a heart attack cause brain damage? Medical News Today. https://www.medicalnewstoday.com/articles/heart-attack-brain-damage#effects

[2] Horriar, Lina et al. “Improving survival after cardiac arrest in Europe: The synergetic effect of rescue chain strategies.” Resuscitation plus vol. 17 100533. 21 Dec. 2023, doi:10.1016/j.resplu.2023.100533

[3] (2024, May 9). Stem Cell Therapy Boosts Natural Repair After Cardiac Arrest. University of Maryland Baltimore. https://www.umaryland.edu/news/archived-news/may-2024/stem-cell-therapy-boosts-natural-repair-after-cardiac-arrest.php


jesse-orrico-Us3AQvyOP-o-unsplash-980x649-1.jpg

It was announced this week that researchers at the University of East London had managed to grow a “heart” using stem cells.

This breakthrough could be instrumental in paving the way for life-saving research into heart disease treatments, with stem cells playing a pivotal role in the future of cardiovascular research.

According to the British Heart Foundation, there are over 170,000 deaths linked to heart and circulatory diseases each year. That’s 480 each day, or 1 every 3 minutes.

With 7.6 million people in the UK living with heart and circulatory diseases, progress in the field of cardiovascular medicine can’t come soon enough. [1]

Because the grown stem cell “heart” has the same characteristics as a normal human heart, scientists are hoping that it can be a more ethical, accurate alternative to the use of animal specimens in research.

This is the latest development in a long line of investigations into the application of stem cells to grow heart tissue.

Last April, researchers at the Francis Crick Institute and Imperial College London set about evaluating how human pluripotent stem cells (hPSCs) could be used to grow left ventricular heart muscle cells. [2]

Their findings suggested that, with the right environment, stem cells are able to differentiate successfully into the cells that make up the left ventricle of the heart, the area most commonly affected by heart disease [3]

In August of last year, a team of researchers from various Israeli institutions had grown a small, yet complete and beating, model of a heart using stem cells. They were even able to fit sensors to the model to monitor its behaviour. [4]

These so-called organoid hearts, grown from stem cells, are incredibly useful in finding treatments and therapies for cardiovascular diseases because of their likeness to human hearts.

Although these “grown” hearts are a lot smaller than human hearts, their construction and makeup reflects the different chambers, tissues and cells that make up a human heart far more accurately. This makes them better in experiments for developing medicine for heart disease than animal samples.

The team at The University of East London are also looking to develop an AI in conjunction with the stem cell heart to monitor intricate changes to cells that could indicate the onset of heart disease. [5]

With thousands of clinical trials currently underway for the application of cord blood and perinatal stem cells in regenerative medicine, it’s possible that your baby’s umbilical cord and placenta hold the key to unlocking their access to the treatments of the future.

Find out more about how storing your baby’s stem cells could safeguard their health for life by downloading our FREE Welcome Pack below.

Sources

[1] (2024, January 1). Heart Statistics. British Heart Foundation. https://www.bhf.org.uk/what-we-do/our-research/heart-statistics

[2] Ingham, K. (2023, April 26). A heartbeat in a dish – growing specialised heart cells. Imperial College London. https://www.imperial.ac.uk/news/244579/heartbeat-dish-growing-specialised-heart-cells/

[3] Nicola Dark, et al., Generation of left ventricle-like cardiomyocytes with improved structural, functional, and metabolic maturity from human pluripotent stem cells, Cell Reports Methods, Volume 3, Issue 4, 2023, 100456, ISSN 2667-2375

[4] Ghosheh, M., Ehrlich, A., Ioannidis, K. et al. Electro-metabolic coupling in multi-chambered vascularized human cardiac organoids. Nat. Biomed. Eng 7, 1493–1513 (2023)

[5] Keane, D. (2024, February 19). Heart disease breakthrough as scientists grow ‘heart in a dish’ using stem cells in London lab. The Standard. https://www.standard.co.uk/news/health/university-east-london-scientists-heart-dish-stem-cells-b1139981.html


AdobeStock_232479875-980x551-1.jpeg

A new study conducted by researchers at the Mayo Clinic has found that stem cell treatment for patients with advanced heart failure offers an improved quality of life.

As many as 100,000 people are admitted to hospital in the UK every year due to heart attacks [1]. Heart attacks can lead to heart failure, where damage to cardiac muscles makes it harder for blood to be pumped around the body.